I added my own lang model:
python -u DeepSpeech.py \
--train_files /home/amolina/repo/ciem2ds/ciempiess_ds/sortlen_half_train.csv \
--test_files /home/amolina/repo/ciem2ds/ciempiess_ds/sortlen_all_test.csv \
--alphabet_config_path data/mex_alphabet.txt \
--lm_binary_path data/mexlm/transcrip_efinfo_noloc_2017-2018_probing.binary \
--train_batch_size 2 \
--test_batch_size 1 \
--n_hidden 124 \
--epochs 30 \
--checkpoint_dir "$checkpoint_dir" \
"$@"
Got better:
Epoch 29 | Training | Elapsed Time: 0:07:03 | Steps: 9297 | Loss: 66.886114
I FINISHED optimization in 3:32:14.989515
WARNING:tensorflow:From /home/amolina/deepvenv/lib/python3.6/site-packages/tensorflow/python/training/saver.py:1266: checkpoint_exists (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version.
Instructions for updating:
Use standard file APIs to check for files with this prefix.
I Restored variables from most recent checkpoint at data/CIEMhalf_checkpoint/train-278910, step 278910
Testing model on /home/amolina/repo/ciem2ds/ciempiess_ds/sortlen_all_test.csv
Computing acoustic model predictions | Steps: 6974 | Elapsed Time: 0:01:56
Decoding predictions | 100% (6974 of 6974) |###################################################################################################################| Elapsed Time: 0:23:50 Time: 0:23:50
Test on /home/amolina/repo/ciem2ds/ciempiess_ds/sortlen_all_test.csv - WER: 0.911197, CER: 0.754889, loss: 154.287247
--------------------------------------------------------------------------------
WER: 2.500000, CER: 12.000000, loss: 51.920681
- src: "después evolucionó"
- res: "de que con con lo"
--------------------------------------------------------------------------------
WER: 2.000000, CER: 4.000000, loss: 7.394387
- src: "pintando"
- res: "en tanto"
--------------------------------------------------------------------------------
WER: 2.000000, CER: 5.000000, loss: 9.625606
- src: "talando"
- res: "a la"
--------------------------------------------------------------------------------
WER: 2.000000, CER: 4.000000, loss: 10.330667
- src: "esclavos"
- res: "es la"
--------------------------------------------------------------------------------
WER: 2.000000, CER: 4.000000, loss: 11.659359
- src: "entonces"
- res: "en donde"
--------------------------------------------------------------------------------
WER: 2.000000, CER: 5.000000, loss: 12.737014
- src: "soldados"
- res: "son las"
--------------------------------------------------------------------------------
WER: 2.000000, CER: 5.000000, loss: 15.502726
- src: "tiones"
- res: "yo me"
--------------------------------------------------------------------------------
WER: 2.000000, CER: 4.000000, loss: 15.514644
- src: "okey"
- res: "o que"
--------------------------------------------------------------------------------
WER: 2.000000, CER: 6.000000, loss: 17.840826
- src: "círculo"
- res: "si no"
--------------------------------------------------------------------------------
WER: 1.666667, CER: 22.000000, loss: 56.092628
- src: "concientización magníficamente desentendimiento"
- res: "con sentido la mexicana sentimiento"
--------------------------------------------------------------------------------