Hi @lissyx , I trained with the chinese language dataset from “openslr.org/18/”.
My inference model is not predicting the text. I received the following stack trace,
(asr) shenzhen@shenzhen:~/Desktop/zh_servermodel$ ls
alphabet.txt en_models output_graph.pb trie vocabulart.txt zh_lm.binary
(asr) shenzhen@shenzhen:~/Desktop/zh_servermodel$ deepspeech output_graph.pb /home/shenzhen/Desktop/Take2_data/Jugs/2017-11-02-15\:19\:00.wav alphabet.txt zh_lm.binary
Loading model from file output_graph.pb
2018-05-17 15:04:45.930784: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
Loaded model in 0.157s.
Running inference.
2018-05-17 15:04:46.172535: E tensorflow/core/framework/op_segment.cc:53] Create kernel failed: Invalid argument: NodeDef mentions attr 'identical_element_shapes' not in Op<name=TensorArrayV3; signature=size:int32 -> handle:resource, flow:float; attr=dtype:type; attr=element_shape:shape,default=<unknown>; attr=dynamic_size:bool,default=false; attr=clear_after_read:bool,default=true; attr=tensor_array_name:string,default=""; is_stateful=true>; NodeDef: bidirectional_rnn/bw/bw/TensorArray_1 = TensorArrayV3[clear_after_read=true, dtype=DT_FLOAT, dynamic_size=false, element_shape=[?,750], identical_element_shapes=true, tensor_array_name="bidirectional_rnn/bw/bw/dynamic_rnn/input_0", _device="/job:localhost/replica:0/task:0/device:CPU:0"](bidirectional_rnn/bw/bw/TensorArrayUnstack/strided_slice). (Check whether your GraphDef-interpreting binary is up to date with your GraphDef-generating binary.).
2018-05-17 15:04:46.172591: E tensorflow/core/common_runtime/executor.cc:643] Executor failed to create kernel. Invalid argument: NodeDef mentions attr 'identical_element_shapes' not in Op<name=TensorArrayV3; signature=size:int32 -> handle:resource, flow:float; attr=dtype:type; attr=element_shape:shape,default=<unknown>; attr=dynamic_size:bool,default=false; attr=clear_after_read:bool,default=true; attr=tensor_array_name:string,default=""; is_stateful=true>; NodeDef: bidirectional_rnn/bw/bw/TensorArray_1 = TensorArrayV3[clear_after_read=true, dtype=DT_FLOAT, dynamic_size=false, element_shape=[?,750], identical_element_shapes=true, tensor_array_name="bidirectional_rnn/bw/bw/dynamic_rnn/input_0", _device="/job:localhost/replica:0/task:0/device:CPU:0"](bidirectional_rnn/bw/bw/TensorArrayUnstack/strided_slice). (Check whether your GraphDef-interpreting binary is up to date with your GraphDef-generating binary.).
[[Node: bidirectional_rnn/bw/bw/TensorArray_1 = TensorArrayV3[clear_after_read=true, dtype=DT_FLOAT, dynamic_size=false, element_shape=[?,750], identical_element_shapes=true, tensor_array_name="bidirectional_rnn/bw/bw/dynamic_rnn/input_0", _device="/job:localhost/replica:0/task:0/device:CPU:0"](bidirectional_rnn/bw/bw/TensorArrayUnstack/strided_slice)]]
Error running session: Invalid argument: NodeDef mentions attr 'identical_element_shapes' not in Op<name=TensorArrayV3; signature=size:int32 -> handle:resource, flow:float; attr=dtype:type; attr=element_shape:shape,default=<unknown>; attr=dynamic_size:bool,default=false; attr=clear_after_read:bool,default=true; attr=tensor_array_name:string,default=""; is_stateful=true>; NodeDef: bidirectional_rnn/bw/bw/TensorArray_1 = TensorArrayV3[clear_after_read=true, dtype=DT_FLOAT, dynamic_size=false, element_shape=[?,750], identical_element_shapes=true, tensor_array_name="bidirectional_rnn/bw/bw/dynamic_rnn/input_0", _device="/job:localhost/replica:0/task:0/device:CPU:0"](bidirectional_rnn/bw/bw/TensorArrayUnstack/strided_slice). (Check whether your GraphDef-interpreting binary is up to date with your GraphDef-generating binary.).
[[Node: bidirectional_rnn/bw/bw/TensorArray_1 = TensorArrayV3[clear_after_read=true, dtype=DT_FLOAT, dynamic_size=false, element_shape=[?,750], identical_element_shapes=true, tensor_array_name="bidirectional_rnn/bw/bw/dynamic_rnn/input_0", _device="/job:localhost/replica:0/task:0/device:CPU:0"](bidirectional_rnn/bw/bw/TensorArrayUnstack/strided_slice)]]
None
Inference took 0.090s for 7.970s audio file.
However, the inference model works perfectly fine with the downloaded pre trained model.
(asr) shenzhen@shenzhen:~/Desktop/zh_servermodel/en_models$ deepspeech output_graph.pb /home/shenzhen/Desktop/Take2_data/Jugs/2017-11-02-15\:16\:38.wav alphabet.txt lm.binary
Loading model from file output_graph.pb
2018-05-17 14:59:36.900942: I tensorflow/core/platform/cpu_feature_guard.cc:137] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
Loaded model in 0.241s.
Running inference.
for every men i killed field father from home
Inference took 6.228s for 3.560s audio file.