I am trying to fine tune the Deep Speech 0.5.1 model with deepspeech-0.5.1-checkpoint.tar.gz downloaded.
The code snippet is as below
source myenv/bin/activate
cd DeepSpeech-0.5.1/
pip3 install -r requirements.txt
pip3 install tensorflow-gpu==1.13.1
pip3 install $(python util/taskcluster.py --decoder)
python util/taskcluster.py --arch gpu --target native_client
# Creating a LM with kenlm
cd ..
git clone https://github.com/kpu/kenlm.git
cd kenlm/
mkdir build
cd build/
cmake ..
make -j 4
cd ../../my-model/
../kenlm/build/bin/lmplz -o 5 <some.txt >lm.arpa
../kenlm/build/bin/build_binary lm.arpa lm.binary
../DeepSpeech-0.5.1/native_client/generate_trie alphabet.txt lm.binary trie
cd ../DeepSpeech-0.5.1/
nohup python3 -u DeepSpeech.py \
--train_files "/home/dev_ds/deepspeech_dir_1/corpus/corpus-train.csv" \
--dev_files "/home/dev_ds/deepspeech_dir_1/corpus/corpus-dev.csv" \
--test_files "/home/dev_ds/deepspeech_dir_1/corpus/corpus-test.csv" \
--alphabet_config_path "/home/dev_ds/deepspeech_dir/deepspeech-0.5.1-models/alphabet.txt" \
--lm_binary_path "/home/dev_ds/deepspeech_dir/my-model/lm.binary" \
--lm_trie_path "/home/dev_ds/deepspeech_dir/my-model/trie" \
--checkpoint_dir /home/dev_ds/deepspeech_dir/deepspeech-0.5.1-checkpoint/ \
--train_batch_size 48 \
--dev_batch_size 4 \
--test_batch_size 4 \
--learning_rate 0.00005 \
--export_dir "/home/dev_ds/deepspeech_dir_1/my-model/" \
&>> new_spkr.log &
---------------------------------------------------------------------------
But log file has following error at the end
Error: Trie file version mismatch (4 instead of expected 3). Update your trie file.
terminate called after throwing an instance of 'int'
But when I use the lm.binary
and trie
files from deepspeech-0.5.1-models.tar.gz , output_graph.pb
is successfully getting exported. But I am not satisfied with the model performance using that LM.
This issue is already discussed in other threads, but I could not get proper solution. Let me know what is wrong with native_client
and/or generate_trie
.
myenv specifications
pip3 freeze
absl-py==0.7.1
asn1crypto==0.24.0
astor==0.8.0
attrdict==2.0.1
audioread==2.1.8
bcrypt==3.1.7
beautifulsoup4==4.8.0
bs4==0.0.1
certifi==2019.6.16
cffi==1.12.3
chardet==3.0.4
cryptography==2.7
cycler==0.10.0
decorator==4.4.0
deepspeech==0.5.1
deepspeech-gpu==0.5.1
ds-ctcdecoder==0.5.1
gast==0.2.2
grpcio==1.23.0
h5py==2.9.0
idna==2.8
joblib==0.13.2
Keras-Applications==1.0.8
Keras-Preprocessing==1.1.0
kiwisolver==1.1.0
librosa==0.7.0
llvmlite==0.29.0
Markdown==3.1.1
matplotlib==3.1.1
mock==3.0.5
numba==0.45.1
numpy==1.15.4
pandas==0.25.1
paramiko==2.6.0
progressbar2==3.43.1
protobuf==3.9.1
pycparser==2.19
PyNaCl==1.3.0
pyparsing==2.4.2
python-dateutil==2.8.0
python-utils==2.3.0
pytz==2019.2
pyxdg==0.26
requests==2.22.0
resampy==0.2.2
scikit-learn==0.21.3
scipy==1.3.1
six==1.12.0
SoundFile==0.10.2
soupsieve==1.9.3
sox==1.3.7
tensorboard==1.13.1
tensorflow-estimator==1.13.0
tensorflow-gpu==1.13.1
termcolor==1.1.0
urllib3==1.25.3
Werkzeug==0.15.5
wget==3.2
– Thank you